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SUMMARY

In the problemn of inverting remnote sensing measurcients of rain, current representations of the
raindrop size distribution (DSD) suffer crucially from the expedient but unjustified and empirically
ill-fitting assumption that the distribution has a known closed-form shape, whether log-normal or T-
distributed. This paper proposes an approach to avoid such unfounded a priori assumptions entirely. The
resulting representation of the rain is then used to derive “forward” formulas for rain remote-sensing
algorithms.
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1. INTRODUCTION

The approach currently widely used to establish radar-reflectivity « rain-rate re-
lations from experimental data, and subsequently estimate rainfall from radar measure-
ments, is based on the physical relation between the rain rate R and drop size density
function and the radar reflectivity coefficient Z (see e.g. Marshall and Palmer, 1948,
and Ryde, 1946). Originally, a simple power law Z = aR® was assumed, and regression
analyses of measured data consisting of simultaneous observations of rain intensities and
radar reflectivities were performed, resulting in a plethora of power-law Z-R relations
with large variations in the value of the coefficient a and the exponent b (see e.g. Battan,
1973). Other relations were calculated from disdrometer-measured drop size histograms:
an analytic form for the drop size distribution was postulated (log-normal or I'), then the
parameters of the distribution were calculated from the data, typically using notoriously
biased sample moments. The values of the resulting coefficients a and b still ranged over
wide intervals. More serious is the problem that the approach does not guarantee that
the parameters are mutually independent, or indeed that they are mutually independent
with R (in fact, quite the opposite is true), leading to very serious inconsistencies in
the algorithms that use such relations to retrieve rain. One “quick fix” solution would
be to eschew DSD-based relations altogether and use only regression-based power laws.
However, the problems with the regression relations are much more serious than those
with the current DSD approaches (see e.g. Haddad and Rosenfeld, 1997): the integration
time required to obtain a sufficiently large set of simultaneous samples almost guarantees
that the sampled population will not be homogeneous, and the scatter about the mean
regression relation produces large uncertainties in the rain retrievals.

A second, equally serious, problem with DSD-based Z- R relations is that statistical
tests for goodness of fit have repeatedly failed to support the assumption that the sampled
drops are consistent with a I'- or lognormal distribution. Never close enough to the data
when judged by the residual noise, the I' and lognormal fits are especially bad when
large drops occur, i.e. during convective events, and in cases with peaks, convective or
stratiform. Recent experiments have shown evidence of drop breakup with peaks near
0.7 mm and 2.5 mm (Keenan, 1997). This basic mismatch between the assumption about
the DSD shape and the actual data will produce radar-rain relations that are ill-suited
to the type of rain event under study, and that will unavoidably bias the rain estimates.
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2. SURFACE DATA

The approach we adopted to solve this problem is based on Karhunen’s theorem
for stochastic processes. Indeed, the main advantage of parametrising the DSD is to re-
duce the entire description of the rain (at least of that aspect of the rain that affects
the radiometric measurements) to the knowledge of two or (more typically) three values,
for example in the case of the I-distribution representation (Ulbrich, 1983) two shape
parameters j and A representing the normalised variance of the drop diameter (actually
equal to 1/(y + 1)) and the mean drop size divided by the normalised variance (equal to
1/A), and a quantity parameter (proportional to the total liquid mass). However, while
the parameters that one finds may give the best I'- or lognormal-distribution fit, the
discrepancy between this fit and the data is in almost every case still too large given the
number of sampled drops. An intuitively more direct and representative approach would
be to use as DSD variables the numbers of drops of all (sufficiently finely discretised)
sizes, spanning the entire spectrum of precipitating liquid drops. For example, one could
use as parameters Ny, - - -, Npg representing the “recalibrated” Joss-Waldvogel discreti-
sation, namely N; = the number of drops (per cubic meter of air) with diameter between
D;_; and D;, and Dy =0, D; = 0.48 mm, Dy = 0.6 mm, D3 = 0.72 mm, D4 = 0.84 mm,
Dy = 0.96 mm, Dg = 1.2 mm, D; = 1.44 mm, Dg = 1.68 mm, Dg = 1.92 mm, Dy = 2.16
mm, Dy, = 2.52 mm, Do = 2.88 mm, Dy3 = 3.24 mm, D4 = 3.6 mm, D5 = 3.96 mm,
Dyg = 4.44 mm, Dy7 = 4.92 mm, Dyg = 5.4 mm, Dyg = 6.0 mm, Dy = 0c. The problem
would then be that one would end up with 20 parameters N; to be determined when
performing a retrieval, definitely too many variables. Grouping adjacent size bins into
single variables (each representing a correspondingly wider range of drop sizes) would be
counter-productive since it would drastically increase the error in the resulting radar-rain
relations (after all, the reflectivity depends on the 6" power of the drop diameter, so
if the error in the latter is tripled, say, by combining three adjacent size bins, the error
in the reflectivity gets multiplied at least 18-fold!). To avoid this problem, one would
need a more careful method to reduce the information in the size bins into two or three
variables. This can indeed be accomplished using the Karhunen-Logve approach. In the
case at hand, one needs to calculate the covariances of the variables representing the
equivalent mass-per-volume-of-air of the drops in each “high-resolution” drop-size bin,
then diagonalise the covariance matrix: the eigenvectors corresponding to the three or
four largest eigenvalues would be the (three or four) linear combinations of the bin counts
which embody (most of) the description of the given DSD, since their eigenvalues are the
largest (recall that the eigenvalues are the covariances themselves, so the eigenvectors
corresponding to the largest eigenvalues are the variables that vary most, while the ones
corresponding to the smaller eigenvalues are the ones that remain relatively constant). An
important additional advantage is that the eigenvectors are automatically uncorrelated,
thus allowing one to assume correctly that they vary independently (to first order).

We have performed the Karhunen-Loéve principal-component analysis on the Joss-
Waldvogel distrometer data collected at sea level near Darwin during two rainy seasons,
from November 1988 to March 1990. In order not to give equal weight to all drops, it was
necessary to choose a more physical weighting which converts counts into mass and thus
gives as much importance 1o a drop-size bin as the mass of liquid it represents indicates.
We also needed to make sure that the variables could not ever be negative. These concerns
naturally lead to the definition of new variables L; = \/(4/.3 n(D;/2)3N;, which we shall
use instead of the N;’s. Note that the norm-squared Z l, gives the l()lal liguid water
content. The smnple covariance matrix of the Lj’s, (()mpul('d using the Darwin data, can
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then be diagonalised. The new (uncorrelated) variables with the largest variances are

N{ = 0.13L;+ 0.31Lg + 0.45Lg + 0.46Lyo -+ 0.5Ly; + 0.36L;5 + 0.25L;3 (1)
]Vé = 0.11L3+ 0.13L4 + 0.22L5 + 0.44Lg + 0.54L7 + 0.45Lg + 0.21Lg
—0.2L1; — 0.25L12 — 0.25L33 — 0.14Ly4 (2)
Ni = 0.1Lz+ 0.13L4+ 0.22L5 + 0.38Lg + 0.23L7; ~ 0.34Lg — 0.26L;0 + 0.34L),
+0.54L13 + 0.33L34 + 0.1Ly5 (3)

These coefficients are quite remarkable. The first variable does indeed appear to charac-
terise the larger-drop DSD peak, being the weighted sum of the contributions from those
drops whose diameter is about D;o = 2.16 mm, while the second variable is most sensitive
to the smaller-diameter drops around Dg = 1.2 mm. Those are remarkably close to the
two independently observed DSD peaks (Keenan, 1997). Table 1 lists the variances of all
twenty eigenvariables. Note that the variance of Nj is already 10 times smaller than that
of Nj, confirming that most of the characterising information about drop quantity and
distribution shape is indeed contained in the first three eigenvariables.

One may thus simplify the description of a particular DSD sample by retaining
only the corresponding values of (N7, Nj, N3, N;) and considering that the values of the
higher-order N’s are their respective means. This procedure is justified by the fact that
the variance of N (and therefore of N;, j > 5) is quite small. Figure 1 shows an example
of an original sample, along with its reconstruction using mean values for the higher-
order NJ’- ’s. The truncation error is manifestly quite small. More generally, the effect of
the truncation error can be quantified using a x? test, calculating for each sample the
statistic

X (L= L)

> —I, (4)

i=1

where {L;} are the observed contributions to the liquid mass in each size bin, and {L}}
are the contributions calculated from (N{, N3, N3, Ng) and the means of the remaining
eigenvariables N, - -+, Ngg. Of the 6905 samples from Darwin, a quite respectable 3522
fall within the 95" percentile of the distribution of (4). This contrasts quite favorably
with the results obtained when I' or lognormal fits are made, in which case typically not
one sample passes the classic goodness-of-fit test.

3. AIRBORNE MEASUREMENTS

Unfortunately, the Darwin data exhibited flagrantly anomalous behavior for larger
rain rates I2, namely a sudden jump in the correlation between the width of the DSD
and R, when R exceeded 12 mm/hr. Since those data were collected using an instru-
ment which has been shown to be non-stationary, especially when exposed to higher
rain rates (Sheppard and Joe, 1994), we restricted the samples used in the principal
component analysis above to those producing rain rates below 12 mm/hr. To confirm
that the results are essentially still valid at higher rain rates, it was necessary to analyse
DSD measurements from other tropical locations using different instruments. We chose
to analyse measurements made during the Intense Observation Period of the TOGA
Coupled Ocean-Atmosphere Response Experiment (TOGA/COARE). These data were
collected in the warin pool of the western equatorial Pacific between November, 1992,
and February, 1993 (Lukas et al, 1995), using NCAR’s 2-D PMS spectrometer probes
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mounted on the NCAR Electra aircraft (Yuter et al, 1995). The data were reduced us-
ing a method essentially similar to the one described in Black and Hallett, 1986, then
re-sampled according to the Darwin distrometer size bins. To “verify” the decomposition
obtained from the Darwin data, we first analysed only those TOGA/COARE samples
producing rain rates below 10 mm/hr. The first three eigenvariables were

N{" = 0.13Ls+ 0.19Ls + 0.43Lg )
+0.52L7 + 0.46Lg + 0.33Lg + 0.29L19 + 0.23L1; + 0.15L;2

NY = 037L,+ 0.34Ly + 0.4L3 + 0.35L4 + 0.35L5 + 0.33Ls (6)
—0.13Lg — 0.24Lg — 0.25Lq1p — 0.25L3; — 0.14L5

Ny = 05L;+ 0.32L, + 0.28L3 — 0.33Lg — 0.27Ly (7)

+0.2Lg + 0.33L10 + 0.38L3; + 0.28L32 + 0.12L;3

These coefficients are remarkably similar to those obtained for the Darwin data. The first
two variables are concentrated near the same two drop-diameter peaks, and the third is
a three-humped window of roughly the same shape as in the Darwin case.

Encouraged by this comparison, we decided to use the entire TOGA/COARE data
set to derive expressions for N} which would be valid at all rain rates, for all types of
rain. Table 2 shows all the entries of the change-of-basis matrix expressing { N} in terms
of {L;}. The means and variances (eigenvalues) of the new (eigen)variables are given in
table 3. They are quite similar to those obtained with the Darwin data: the first variable
is again concentrated around the larger drop diameters, the second represents a difference
between smaller and larger drop contributions, and the third is a three-humped window
of the same shape as before. Finally, note that, because the matrix of change of basis is
orthogonal, we still have

Z NJ'-2 = the total liquid water content (8)
J

In particular, the variances in table 3 (and 1) are in units of grams per cubic meter.
Evidently, the first three eigenvariables embody most of the quantitative and qualitative
information about a DSD sample.

4. HORIZONTAL AND VERTICAL VARIABILITY

Because the PMS spectrometers were mounted on a platform flying at an approx-
imately constant speed, one can readily use the COARE data to estimate the spatial
variability of the DSD eigenvariables. One measure of variability is particularly useful in
our case: the absolute m.s. variation vs defined for a stationary random process N'(t)
simply as

vs = E{(N'(t) = N'(t + 6))*} 9

Table 4 shows the values for vs obtained from the COARE data for the eigenvariables
Nj, N}, Nj and Ny (the spatial auto-correlation of the higher-order N”’s are not shown
because their standard deviation over the entire data is already negligibly small, as is
evident in table 3). These variations can be directly compared to the rames, variation of
the total liquid water Y L_? =3 N;2 included in table 4. The sample size was insufficient
to calculate corrclations beyond 8 = 8 km with much confidence. The results confirm that
the spatial variation of NJ for j > 2 remains quite small indeed.
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Finally, table 5 shows the covariances between the values of the N's for the Darwin
samples (again with 2 < 12 mm/hr). The fact that the ofl-diagonal entries are quite small
relative to the diagonal variances implies that our principal component representation,
derived form the COARE data sampled aloft, retains its first-order independence for
ground DSD samples.

5. RADIOMETRIC RELATIONS

Weather radars can measure the effective reflectivity Z, of rainfall quite accurately
(see, e.g., Battan, 1973). At the higher frequencies typical of planned spaceborne de-
signs, the measured reflectivity is lower than the true Z, because of the attenuation [ k
accumulated along the propagation path v, where k is the attenuation coefficient. The
problem of estimating the rain rate R given attenuated reflectivity measurements can be
expressed using Z- R and k-R relations. More recently, the specific polarisation propa-
gation differential phase shift ®pp and the differential reflectivity Zpgr have also been
suggested for their correlation with R and their relatively weak dependence on drop size.
Naturally, there are numerous Z- R, k-R, Zpr-R and ®pp-R relations for any given
frequency (see, e.g., Olsen, 1978), ultimately depending on the shape of the drop size
distribution (or at least, in the case of ®pp, on the mean drop diameter), and on other
environmental factors. Since an inappropriate relation could lead to serious errors in
the retrieved rainfall (Haddad, 1995), it is particularly useful to have relations that are
explicitly parametrized by the DSD: one would then try to determine the appropriate pa-
rameters either from one’s data or from ancillary observations. A parametrization which
uses the principal component analysis above would be particularly useful (and unique)
because it would make no a priori assumption about the form of the DSD, and it would
allow one to assume constant however many DSD variables one must without commit-
ting any correlation-induced inconsistencies and while quantifying the r.m.s uncertainty
which the constancy assumption will have introduced.

To obtain DSD-based relations between Z, and R, we assigned to the vector (N3, Nj)
regularly-spaced discrete values within two standard deviations of the means of each of
the variables: in each case, we then used a Mie-scattering model to compute Z, exactly
as Ni (hence R) varied in the range [0.47 — 3 x 0.14, 0.47 + 3 x 0.14] (i.e. within three
standard deviations of the mean, see table 3), assuming that the temperature varied be-
tween 275 K and 290 K, and letting (Ny, - - -, Njy) vary within two standard deviations
of their respective means. The power law minimising the sum of the mean-squared dis-
tances from the Mie-calculated reflectivities was then calculated for each pair (N3, Nj).
The resulting Z.- R power-law relations

Z, = a(Nj, N3)R(N!; Nj, Nj)bNa:Ns) (10)

for the Tropical Rainfall Measuring Mission’s 13.8 Ghz frequency are given in table 6. To
illustrate the validity of (10), figure 2 shows the Mie and approximate Z, R curves, when
N; =4.61 and N3 = 0.78. Finally, table 7 gives the Rayleigh relations, which apply for
typical ground-based radars. Note that the coefficients do vary quite significantly with
Nj. On the other hand, given a distrometer measurement, one can calculate the value of
N} that should be used in retrieving 12

Relations for the microwave attenuation, differential reflectivity, and diflerential
phase can be obtained iy the same manner. We intend Lo use these relations (means
and variances) to derive a stochastic filter to estimate the rain means and roans. uncer-
taintics from radar measurements.
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6. CONCLUSIONS

The first conclusion one must draw from this application of the principal component
analysis to binned raindrop sizes is that the resulting description of drop size distributions
is quite robust, producing variables which are essentially mutually uncorrelated even
when the correlations are calculated from DSD populations sampled at different times,
in different locations and with different instruments.

Equally important, since the results obtained using a ground distrometer do not dif-
fer significantly from those obtained using airborne probes, in spite of the vastly different
measurement uncertainties, one must conclude that the joint statistics of drop sizes do
not differ significantly in altitude and at the surface. This is particularly useful in the
application of remote sensing to estimate precipitation, since it implies that precipitation
can be modeled using the same set of variables at all altitudes.

Moreover, most of these descriptor variables can be assumed constant spatially,
since a) the variances of all but the first four variables are indeed negligible, and b) the
horizontal autocorrelation estimated from the airborne measurements shows that the all
but the first couple of variables vary little spatially. This allows one to reduce the number
of unknowns in one’s model, without committing the classic inconsistency of assuming one
variable constant and another spatially-varying when the two are significantly correlated.

We are currently applying these results to various rain retrieval procedures, using
ground, airborne, and, soon, spaceborne radar measurements of rain.
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Figure captions

Figure 1: Sample “before/after” histogram illustrating the goodness-of-fit of the “truncated” DSD representa-
tion (this sample is from the Darwin data, and the truncation assumed N, - - -, N4 constant, equal
to their observed means)

Figure 2: Sample radar-rain relation at 13.8 GHz, when (N}, Nj) = (4.61, 0.78)




in g/m3 - the mean total liquid Z NJ'.2 is 0.16 g/m3

N T N R N N I N N N N [N TN TN TN TN T NG TN [N N T
213187 [6.0122 (2.0 18 [T51T1T.1109]0.7 104 10.3470.2870.2510.16{0.15[0.0970.0870.06
TABLE 1. Variances (x10%) of the Darwin cigenvariables for rain rates under 12 mm/hr
] [ Lin] Lo] Ls] Ly ILs Le] L:] Lsg Lo Lio] L] In2 | Lis| Lna[ Lis| Lis ] Inz] Lis[ Lig] Lao])
Ni 020 0.19] 0.23]0.27] 0.31] 0.50] 049 0.37] 0.21] 0.14] 0.09] 0.04 0.02] 0.02] 0.01] 0.01[ 0.01] 0.01 | 0.00] 0.00
N? 0.35{ 029! 0.32} 0.24| 0.22| 0.10]-0.17|-0.35]-0.37 {-0.37 | -0.33 | -0.19 | -0.08 | -0.04 | -0.02 | -0.01 | -0.01 [ -0.01 | -0.01 | 0.00
N§ 0481 0.30| 0.26 | 0.04 [-0.05|-0.33-0.32]-0.06] 0.18| 0.32| 0.39| 0.29| 0.14] 0.07| 0.04| 0.02} 0.01| 0.01{ 0.01 | 0.02
N {1-0.321-0.12]-0.02] 0.19]| 0.22} 0.30)-0.08-0.36|-0.291-0.01 | 0.25)| 0.52| 0.28 | 0.20| 0.13| 0.09] 0.05] 0.03 | 0.03 [ 0.03
N; -0.261-0.051 0.07[ 0.22] 0.21] 0.137-0.24[-0.24] 0.07] 0.33] 0.37]-0.331-0.35[-0.31 [-0.21-0.17]-0.12}-0.08 | -0.10 [ -0.15
Ng 0.06 [ 0.02 | 0.00|-0.06 | -0.05|-0.01| 0.08} 0.05}-0.04 [-0.09|-0.16| 0.69]-0.44 |-0.35}-0.23 {-0.21|-0.14|-0.09|-0.08 | -0.17
N? -0.29 | -0.01| 0.15| 0.27{ 0.19]-0.09|-0.31| 0.01 | 049 | 0.19|-061| 0.14| 0.04] 0.11 | 0.08| 0.05| 0.03| 0.00| 0.00|-0.02
N¢ 0.00 | -0.01 | -0.02 | 0.02{ 0.02| 0.01]-0.02|-0.02|-0.07] 014 0.00| 0.06]-0.52[-0.06| 0.17}| 0.24| 0.21] 0.15| 0.27| 0.68
7\75 -0.13] 0.01] 0.09| 0.11] 0.06 [-0.09|-0.11| 0.08] 0.43]-0.73] 0.37] 0.021-0.20] 0.04] 0.15| 0.12| 0.04 | -0.01]-0.01 [-0.04
N}0 -0.05|-0.01 | 0.00{ 0.05| 0.04| 0.00|-0.05{ 0.00| 0.16 {-0.19 | 0.02( 0.02 | 0.42]-0.26 | -0.44 | -0.35 | -0.15| 0.01 | 0.12 | 0.58
N;1 0.36 | -0.07 | -0.32 { -0.26 | -0.07 | 0.42{ 0.01 | -0.54 | 0.47 | 0.00 { -0.07 | -0.01 | -0.04 | 0.03 | 0.06 | -0.02 | -0.03 | -0.01 ] 0.03 | -0.01
N3, |{-0.01] 0.00f 0.00| 0.01] 0.00)-0.02} 0.01 | 0.03-0.04]| 0.01] 0.02-0.02[-0.26| 063 | 0.14{-0.52-0.45]-0.02|-0.10| 0.19
Nis -0.01 | 0.00] 0.00 | 0.027] 001 [-0.01[-0.03[ 0.02] 0.011-0.02] 0.01}-0.01]-0.04] 0.05[-0.09[-0.19[-0.04] 0.55 0.73]-0.32
N;‘1 -0.01| 0.00| 0.01 | 0.01| 0.00{-0.01|-0.01 0.03(-0.02{ 0.02|-0.02(-0.01] 0.15]-0.47{ 0.65} 0.03}-0.57| 0.04{ 0.08| 0.03
N;s -0.23 | 0.22| 0.44]-0.53 |-0.23 | 0.46|-0.35| 0.18 {-0.02 |-0.01 [ 0.00| 0.00 | 0.00{ 0.01 |-0.01 | 0.00] 0.00 | 0.01{ 0.00} 0.02
Ni . |l-0.24] 0.15]| 0.35{-0.08 [-0.16 | -0.20 | 0.45]-0.36§ 0.09| 0.04 ]| 0.00{-0.02] 0.00]| 0.02]| 0.06|-0.06| 0.04 | -0.48 | 0.38 | -0.02
Ni7 0.17[-0.10|-0.27[ 0.06 [ 0.12] 0.15]-0.35] 0.307-0.101-0.02 0.00] 0.00] 0.00] 0.051 0.0 0.01]-0.011-0.65] 0.44 [ -0.05
N}8 -0.02 | 0.01{ 0.03 [-0.01|-0.01|-0.02| 0.05[-0.04| 0.02]| 0.01 | 0.00| 0.00|-0.05} 0.18-0.42] 0.64 | -0.61 | 0.01 [ 0.08 ] 0.02
N}9 -0.25 | 0.82(-0.50| 0.09 |[-0.07| 0.02]-0.01| 0.00| 0.00| 000} 0.00] 0.00] 0.00 0.00 | 0.00{ 0.00]| 0.00] 0.00|-0.01 | 0.00
N2 || -0.03 [ 0.09 |-0.05|-0.567 | 0.78 | -0.23 | 0.05 |-0.01 [ 0.00 | 0.00} 0.00 | 0.00| 0.00]| 0.00] 0.00] 0.00] 0.00] 0.00 | 0.00 | 0.00
TABLE 2. Change-of-basis matrix (from the COARE data)

[N T N2 T N: TN [N TNg TN [ Ng [ No TN TN [ NI [ Nia [ NIy TN [ NI [ NG, [ Vig | Nig | Nog |
mean X 10 47 T026]0.74[0.13]0.16 [ 0.0 [0.03]0.04 [0.01 [ 0.02 [ 0.01 [ 0.008 [ 0.004 T 0.001 | 0.04 | 0.01 [ 0.06 | 0.003 | 0.006 | 0.009 |
variance x10°[20.3[1556] 52 |21 | 1.1 |08 ] 0706 ] 05 [ 05 [037] 034 | 0.28 ] 0.256 ]0.09}0.15]0.17] 0.18 { 0.002 [ 0.003

TABLE 3. Means and Variances of the COARE eigenvariables
Tk [ 2km [3km [4dkin [5km [6kin [ 7kin [ 8km |

]\Tf 0.031 | 0.046 | 0.047 | 0.038 | 0.046 | 0.035 | 0.046 | 0.05
NT 0.018 10.027 [ 0.03210.03610.038] 0.04 10.042] 0.044
N 0.01 10.015]0.017 1 0.019 [ 0.021 | 0.022 | 0.023 | 0.024
N2 0.005 [ 0.008 [0.009 ] 0.01 | 0.01 | 0.01 [ 0.01 {0.011
N} 0.004 | 0.004 ] 0.004 10.004 1 0.004 10.004 [0.005 | 0.005

TABLE 4. r.m.s. variation of the total liquid mnass, and m.s. variation of the first four cigenvariables,



[ N Mol Nl Nel Nel Mol Mo Nel Mol N [ NG T N NG T NL T NG TN T N T NN
N; 17461 5.62 [ -2.90]-2.88[-0.45]-0.58-0.737 0.20]-0.66| 0.21 {-0.19[-0.077 0.037 0.06 [-0.387-0.14 ] 0.16 [ 0.09 | -0.07
N? 5.62 (14.25] 854 092 013 0481-0.42|-1.15}-0.35| 0.66| 0.56 ] 0.18 | 0.13[-0.04 | 0.31 | 0.24 |-0.20 | 0.01 | -0.08
N§ 290 8.54(11.65| 4.76[-0.01 | 0.91|-0.01 [-1.46| 017 0.67 [ 0.53| 0.27 | 0.14 | -0.09{ 0.38 | 0.20]-0.21 {-0.03 | 0.05
N, -2.88 1 0.92] 4.76 | 7.02| 1.66 [ 0.64| 1.01 |-1.54 | 0.55] 0.46 | 0.39| 0.39 0.21|-0.15| 0.07] 0.04|-0.15|-0.05 | -0.04
N: -045] 0137 -001] 1.66 [ 3.69[ 0.39]-0.27]-1.33] 0.03] 0.287-0.39 0.37] 0.11[-0.10| 0.00 | 0.02{-0.15]-0.09] 0.03
NZ -0.58 | 0.48| 091 | 064 0.39| 2.53|-0.05|-0.88¢{ 0.18( 0.03 | 0.11 | 0.31 [ 0.04 | -0.05| 0.03 [ -0.07 | -0.07 | -0.09 | -0.01
N7 -0.73 | -0.42| -0.01 | 1.01-0.27 |-0.05} 2.20|-0.04 |-0.12] 0.05-0.29 | -0.07 | 0.01 |-0.02 | 0.06 | -0.09 | 0.06 | 0.05| 0.02
Ny 0.20{-1.15] -1.46 |-1.54 | -1.33 | -0.88 | -0.04 | 1.40 [-0.12]-0.88 | 0.03 | 0.02 | -0.10 | -0.02 | -0.03 [ -0.06 | 0.06 | -0.03 | 0.00
Né -0.66 { -0.35] 017] 0.55[ 0.03] 0.18]-0.12|-0.12 1.731-0.06 {-0.01 [-0.12 | 006 | 0.10| 0.021-0.07 | 0.05| 0.02 | 0.01
N;o 0.21( 0.66| 0.67) 0.46) 0.28) 0.03{ 0.05|-0.88|-0.06| 1.08 1-0.01|-0.52| 0.01| 0.09| 0.01 | 0.10{-0.01 | 0.04|-0.01
N;l -0.19 | 0.56| 0.53| 0.39}-0.39| 0.11}{-0.29 | 0.03|-0.01 {-0.01| 1.05] 0.01 | 0.02|-0.04]-0.02-0.10]| 0.10] 0.00 | 0.00
N1, || -0.07] 0.18] 0.27] 0.39| 0.37] 0.31]|-0.07| 0.02]-0.12{-0.52{ 0.01 | 1.02[-0.03|-0.39| 0.00|-0.02|-0.08| 0.13] 0.01
N;3 003 013} 014] 021 0.11] 0.04] 0.01}-0.10] 0.06[ 0.01] 0.02[-0.03| 0.10] 0.10} 0.01[-0.01 | 0.02] 0.01 [ 0.00
N)4 0.06 | -0.04 | -0.09 | -0.15 { -0.10 | -0.05 | -0.02 | -0.02 | 0.10 | 0.09 [-0.04 | -0.38 | 0.10! 0.83] 0.01 [ 0.01 | 0.04 |-0.25| 0.00
N;5 -0.38 | 0.31) 0.38( 0.07| 0.00 0.03| 0.06]-0.03| 0.02| 0.01 (-0.02] 0.00] 0.01| 0.01] 0.34|-0.10] 0.08 | -0.01 | -0.02
NicJ -0.14] 0.24| 0.20]| 0.04| 0.02]-0.07 | -0.09 { -0.06 | -0.07 |} 0.10 | -0.10 | -0.02 [ -0.01 | 0.01 | -0.10 | 0.42 | -0.25 | 0.02 | -0.01
N;7 016} -0.20] -0.21 [-0.16 [ -0.15 [ -0.07] 0.06 ] 0.06 | 0.05-0.01 [ 0.10|-0.08 | 0.62 ] 0.04] 0.08]-0.25| 0.30 | 0.00| 0.01
N;B 0.09| 0.01] -0.03-0.051{-0.09]-0.09¢1 0.05(-0.03( 0.02( 0.04] 0.00] 0.13| 0.01]-0.25|-0.01 | 0.02] 0.00] 0.49| 0.01
Nig | -0.07] -0.08 | 0.05|-0.04| 0.03]-0.01| 0.02| 0.00| 0.01|-0.01| 0.00| 0.01| 0.00| 0.00{-0.02|-0.01] 0.01 001 0.13
TABLE 5. Covariance matrix for the Darwin data in the new (COARE-derived) representation
N, J N/=-87 ] NI=-55 Ni=-24 NI =0.78 NI=39 1}
-11.72 ][ (2051.59, 0.746) [ (1733.93, 0.780) [ (1333.23, 0.843) [ (927.96, 0.936) | (602.07, 1.049)
-6.28 ][ (1696.19, 0.750) [ (1527.62, 0.761) | (1244.96, 0.804) | (961.15, 0.863) | (677.43,0.950)
-0.83 [ (1973.98, 0.862) | (843.09, 0.887) | ( 684.85, 0.930) | (531.06, 0.988) | (397.17, 1.056)
4.61 || (301.49, 1.162) | ( 305.34, 1.135) | ( 258.11, 1.166) | (221.48, 1.191) | (204.18, 1.103)
10.05 [ (135.47, 1.318) | ( 147.91, 1.268) | (1196.78,1.153) [ (185.66, 1.156) | (246.41, 1.050)
TABLE 6. (a,b) pairs for the reflectivity—rain relation 2 = aR® at 13.8 Ghz
N NI =-87 NI ==35 NI =-24 N> =078 N:=39
-T1.72 [ (731.11, 0.885) | (659.51, 0.912) [ (559.15, 0.950) [ (454.11, 1.019) [ (365.05, 1.079 )
-6.28 1] (622.25, 0.921) [ (588.79,70.934) 1 (540.75, 0.957) | (482.39, 0.987) [ (414.93, 1.030 )
-0.83 ] (466.94, 0.996) | (466.94, 0.994) | (457.77, 0.997) {1 (438.74, 1.007) | (414.43,1.021 )
4.61 [ (300.32, 1.120) | (346.72, 1.073) | (371.67, 1.049) | (392.18,1.031) | (406.79,1.018")
10.05 ] (248.93, 1.157) | (278.62, 1.124) | (327.84, 1.075) | (375.09, 1.034) | (427.78,0.994)

TABLE 7.

{a, b) pairs for the Rayleigh reflectivity-rain relation Z = aR?
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